P P SAVANI UNIVERSITY

Fifth Semester of B. Tech. Examination

December 2022

SEME3011 Heat Transfer

22.11.2022, Tuesday Time: 10:00 a.m. To 12:30 p.m.

Maximum Marks: 60

Instructions:

- The question paper comprises of two sections.
 Section I and II must be attempted in separate answer sheets.
 Make suitable assumptions and draw neat figures wherever required.
- 4. Use of scientific calculator is allowed.

	SECTION - I			
Q-1	Answer the Following: (Any Five)	[05]	co	BTL
(i)	What do you mean by Critical Radius of Insulation?		2	1
(ii)	Define Biot Number.		2	1
(iii)	What do you mean by Conduction?	1	1	1
(iv)	Define Fourier Law of Cooling.		1	1
(v)	What do you mean by Thermal Resistance?		1	1
(vi)	State any Five applications of insulation in the Engineering Field?		1	2
Q - 2 (a)	Write general heat conduction equation for non-homogeneous material, self	[06]	2	3
	heat generating and unsteady three-dimensional heat flow in cartesian			
	coordinates. Name and state the unit of each variable.			
	Case 1: Reduce above equation to one dimensional			
	Case 2: Reduce Case 1 equation for Steady State Conduction			
0.00	Case 3: Reduce Case 2 equation for No Internal Heat Generation			
Q-2(b)	A Mild Steel tank of wall thickness 10 mm contains water at 90 $^{\circ}$ C. The thermal	[05]	4	4
	conductivity of mild steel is 50 W/m °C and the heat transfer co-efficient for			
	inside and outside are 2800 and 11 W/m^2 $^{\circ}$ C respectively. If the atmosphere			
	temperature is 20 °C, Calculate			
	1. The rate of heat loss per m ² of the tank surface			
	The Temperature of the outside surface of the tank			
Q-2(a)	OR			
Q 2 (a)	Explain Physical significance of critical thickness of insulation in the case of	[06]	2	3
Q-2(b)	small diameter wire and steam pipe & derive an expression for the same.	FO. #17		
2 2 (0)	An insulated steam pipe of 160 mm inner diameter and 180 mm outer diameter is covered with 40 mm thick insulation and carries steam at 200 $^{\circ}$ C. Thermal	[05]	4	4
	conductivity of nine material is 29 W/m 0C and of insulation is 2.22 W/m 0C			
	conductivity of pipe material is 29 W/m $^{\circ}$ C and of insulation is 0.23 W/m $^{\circ}$ C. The inside and outside heat transfer co-efficient are 11.6 and 23.2 W/m 2 $^{\circ}$ C			
	respectively. If the temperature of surrounding air is 25 °C, Calculate the rate of			
	heat loss to surrounding from the pipe of 5 m length. Also find the interface			
	temperatures.			
Q-3(a)	Derive an expression for heat transfer through Rectangular infinitely long fin.	[06]	2	3
		[oo]	-	3
Q-3 (b)	Estimate the time required to cook the carrot in boiling water at atmosphere	[05]	4	4
	pressure. The carrot is initially at room temperature of 32 $^{\circ}\text{C}$ and cooking			
	require minimum temperature of 97 $^{\rm o}{\rm C}$ at the centre of the carrot. Treat the			
	carrot as a long cylinder of 18 mm diameter and having folloeing properties.			
	Density = 1025 kg/m^3			
	Specific Heat = 4000 J/Kg K			

Thermal Conductivity = 3.45 W/m o C Convective heat transfer co-efficient = 60 W/m 2 o C

OR

Define fin effectiveness and Fin efficiency. Derive their equation for infinitely [06] Q-3(b) A gas turbine blade made of stainless steel (k = 32 W/m °C) is 70 mm long, 500 [05] m² of cross section area and 120 mm perimeter. The temperature at the root of the blade is 500 °C and it is exposed to the combustion product of the fuel passing from the turbine at 830 °C. If the film co-efficient between the blade and the combustion gases is 300 W/m² °C, Determine 1. The temperature at the middle of the blade 2. The rate of heat flow from the blade Q-4 State the assumptions made during lumped parameter analysis. SECTION - II Q-1 Answer the Following: (Any Five) [05] Define Prandtl Number. (i) Define Solid Angle. (ii) (iii) Define Shape Factor. (iv) State Newton's law of cooling. (v) State Stefan Boltzman 's Law for radiation. (vi) Define Convection. Q - 2 (a) Derive an expression for LMTD for Parallel Flow heat exchanger. [06] OR Q-2(a) Derive an expression for Effectiveness for parallel flow heat exchanger. [06] Q-2(b) In a counter flow heat exchanger, water is heated from 25 $^{\circ}$ C to 65 $^{\circ}$ C by an oil [05] of specific heat 1.45 kJ/Kg K and the mass flow rate of 0.9 Kg/s. The oil os cooled from 230 °C to 160 °C. If the overall heat transfer co-efficient is 420 W/m² °C, Calculate following. 1. The rate of heat transfer 2. The mass flow rate of water 3. The surface area of heat exchanger. Q-3(a) Using Buckingham ∏ Theorem, Derive that Nusselt Number is the function of [06] Reynold and Prandtl Number for Forced Convection. Q-3(a) Derive the equation for Momentum Thickness and Energy Thickness. [06] Q-4 Attempt any two. [80] Derive an expression for Radiation exchange between two infinite parallel (i) 5 plates. Write a short note on fouling. (ii) 4 (iii) State and prove Kirchoff's law for Radiation. 5 : Course Outcome Number CO BTL : Blooms Taxonomy Level Level of Bloom's Revised Taxonomy in Assessment 1: Remember 2: Understand 3: Apply 4: Analyze 5: Evaluate 6: Create